Influence of different shade levels on photosynthetically active radiation, stomatal conductance and chlorophyll content in mint (Mentha spp.) types

M. Palanikumar*1, P.C. Jessykutty ${ }^{2}$, K. Sundharaiya ${ }^{3}$, P. Arul Arasu ${ }^{3}$ and G. Sathish ${ }^{3}$
${ }^{1}$ Department of Spices and Plantation Crops, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore - 641 003, India.
${ }^{2}$ Department of Plantation crops and Spices, College of Agriculture, Vellayani, Thiruvanathapuram, Kerala- 695 522, India.
${ }^{3}$ Horticultural College and Research Institute, Tamil Nadu A gricultural University, Coimbatore - 641003 , India.

Abstract

Fifteen accessions of Japanese mint (Mentha arvensis L.), pepper mint (Mentha piperita L.) and spear mint (Mentha spicata L.) were evaluated under different shade conditions (Open, 25 and 50 per cent shade). Japanese mint recorded higher Photosynthetically Active Radiation (PAR) and pepper mint recorded increased Stomatal Conductance (Cs) under 25 per cent shade condition ($162.57 \mu \mathrm{~mol} \mathrm{~m}{ }^{-2} \mathrm{~s}^{-1}$ and $2.57 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ respectively). Under all the shades (open, 25 and 50 per cent), spear mint recorded higher Chlorophyll 'a' ($0.601,0.575$ and $0.671 \mathrm{mg} \mathrm{g}^{-1}$ respectively) and chlorophyll ' b ' (0.684 , 0.764 and $0.790 \mathrm{mg} \mathrm{g}^{-1}$ respectively) contents. A ccession S2A 4 recorded an increased Stomatal Conductance (Cs) under open condition ($10.96 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$).

Key words: chlorophyll content, different shades, photosynthetically active radiation, stomatal conductance

INTRODUCTION

Mint (Menthaspp.) a uniquemedicinal herb, is widely cultivated for its medicinal and aromatic leaves. It is a creepingstembut grows obliquely upwards to giverise to a leaf shoot. Growth and development of theplants areinfluenced by theamount of incident solar radiation as the light energy is the main input for the photosynthetic process in green plants (Zelitch, 1971). This paper describes the influence of different shade levels on photosynthetically active radiation and related parameters of mint (Menthaspp.).

MATERIALS AND METH ODS

Thefield experiment was conducted at the Instructional Farm, College of Agriculture, Vellayani, Thiruvananthapuram, Keraladuring 2003-2004, South India. The experiment was laid out in a Factorial Randomized Block Design (FRBD) with three replications. Details of fifteen accessions of mint (Mentha spp.) collected for the study are presented in table 1. Rooted cuttings were planted at 10 cm spacing along theridges. High Density Poly Ethylene (HDPE) shade nets of appropriatemesh size (25 and 50 per cent) were used for providing the required shade of 25 and 50 per cent. Thethreespecies were al so grown in theadjacent open area with 100 per cent light area. The observations on Photosynthetically Active Radiation (PAR) and Stomatal Conductance (Cs) were recorded using the Steady State Porometer (T) at 120 days after planting (DAP) and expressed as $\mu \mathrm{mol} \mathrm{m}^{-2} \mathrm{~s}^{-1}$. Chlorophyll contents (a and b) were estimated at 120 DAP by the method prescribed by Stranes and Hardy (1965).

[^0]
RESULTSAND DISCUSSION

Performance of different mint species in each shade condition

Chlorophyll 'a' content and stomatal conductance of the three species differed significantly when raised under open condition while no such significant differencecould beobserved in PAR values (Tables 1-4). Mentha spicata (S3) and Mentha arvensis (S1) recorded higher chlorophyll content and Mentha piperita (S2) recorded higher stomatal conductance under open condition (Table3). Under 25 per cent shadehigher PAR was recorded for M. arvensis (S1) while stomatal conductance was higher in M. piperita (S2) in similar open condition. Further, significant differences were observed inthechlorophyll "a" and " b " contents among thespecies under this shadecondition (Tables 4and 5). Similar findings werereported for Littorellaunifloraby Attridge (2004), who found that theshadelevel when increased to 50 per cent to result in a slight change in the physiology. The highest PAR was recorded for M. piperita(S2) whilestomatal conductancewas more for M. arvensis(S1). Thespecies S3(M. spicata) recorded an increased content of chlorophyll fraction in open conditions.

G eneral effect of shade on performance of mint

ThePAR showed significant variation under different shade levels. The highest PAR on the leaf surface was recorded in plants grown under open condition and the values decreased with increasing shade levels. The lowest value was recorded under 50 per cent shade condition (Table2). The photosynthetic characteristics of plants are greatly influenced by the light condition under which they aregrown. Theleaves absorb thelight

Table 1. Details of mint accessions collected for thestudy

SI. No	Accession number	Date of collection	Source/Place of collection in India (from different parts of the State of Tamil Nadu, India)
1	$\mathrm{~S}_{1} \mathrm{~A}_{1}$	01.08 .2003	Horticultural Research station, Ooty
2	$\mathrm{~S}_{2} \mathrm{~A}_{2}$	13.08 .2003	Vilpatty, Kodaikanal
3	$\mathrm{~S}_{2} \mathrm{~A}_{3}$	16.08 .2003	Agricultural College and Research Institute, Madurai
4	$\mathrm{~S}_{2} \mathrm{~A}_{4}$	06.09 .2003	Horticultural Research Station, Yercaud
5	$\mathrm{~S}_{2} \mathrm{~A}_{5}$	29.08 .2003	Thrissur
6	$\mathrm{~S}_{2} \mathrm{~A}_{1}$	01.08 .2003	Horticultural Research Station, Ooty
7	$\mathrm{~S}_{2} \mathrm{~A}_{2}$	13.08 .2003	Poomparai, Kodaikkanal
8	$\mathrm{~S}_{2} \mathrm{~A}_{3}$	22.08 .2003	Karipatty, Salem
9	$\mathrm{~S}_{2} \mathrm{~A}_{4}$	31.08 .2003	Valparai, Coimbatore
10	$\mathrm{~S}_{2} \mathrm{~A}_{5}$	06.09 .2003	Thrissur
11	$\mathrm{~S}_{3} \mathrm{~A}_{1}$	15.08 .2003	Sedayampatty, Theni
12	$\mathrm{~S}_{3} \mathrm{~A}_{2}$	16.08 .2003	Kallupatty, Madurai
13	$\mathrm{~S}_{3} \mathrm{~A}_{3}$	05.09 .2003	Vayalur, Tridyy
14	$\mathrm{~S}_{3} \mathrm{~A}_{4}$	13.09 .2003	Pullarai, Tenkasi
15	$\mathrm{~S}_{3} \mathrm{~A}_{5}$	20.09 .2003	Thevaram, Cumbum

Table 2. Mean photosynthetically activeradiation ($\mu \mathrm{mol} \mathrm{m}^{-2} \mathrm{~s}^{-1}$) of mint accessions under different shade levels at 120 days after planting

A ccession number	Shade levels (\%)			M ean of accessions
	0	25	50	
$\mathrm{S}_{1} \mathrm{~A}_{1}$	965.50	688.33	118.16	590.67
$\mathrm{S}_{1} \mathrm{~A}_{2}$	1337.16	717.33	140.16	731.56
$\mathrm{S}_{1} \mathrm{~A}_{3}$	959.33	708.36	163.83	610.51
$\mathrm{S}_{1} \mathrm{~A}_{4}$	1033.83	745.33	136.50	638.56
$\mathrm{S}_{1} \mathrm{~A}_{5}$	957.66	709.66	157.33	608.22
M ean (\mathbf{S}_{1})	1050.70	713.81	143.20	
$\mathrm{S}_{2} \mathrm{~A}_{1}$	987.00	513.66	199.46	566.71
$\mathrm{S}_{2} \mathrm{~A}_{2}$	1026.83	568.33	208.16	601.11
$\mathrm{S}_{2} \mathrm{~A}_{3}$	1012.66	585.00	193.50	597.06
$\mathrm{S}_{2} \mathrm{~A}_{4}$	942.83	515.50	190.66	549.67
$\mathrm{S}_{2} \mathrm{~A}_{5}$	1000.16	524.33	206.16	576.89
M ean (S_{2})	993.90	541.37	199.59	
$\mathrm{S}_{3} \mathrm{~A}_{1}$	950.46	515.66	124.33	530.16
$\mathrm{S}_{3} \mathrm{~A}_{2}$	948.00	485.83	174.50	536.11
$\mathrm{S}_{3} \mathrm{~A}_{3}$	1034.50	517.50	128.83	560.28
$\mathrm{S}_{3} \mathrm{~A}_{4}$	956.66	498.66	224.83	560.06
$\mathrm{S}_{3} \mathrm{~A}_{5}$	1041.33	526.66	160.33	576.11
M ean (S_{3})	986.19	508.87	162.57	
M ean (Shade levels)	1010.26	588.01	168.45	
S.E.	89.97	31.91	17.69	
CD (Species)	NS	41.337	22.912	
Pooled analysis				
CD Accessions				
Shades				
Shade \times accession				

NS-N on Significant; *significant at 5\% level

Table 3. Mean stomatal conductance ($\mu \mathrm{mol} \mathrm{m}{ }^{-2} \mathrm{~s}^{-1}$) of mint accessions under different shadelevels at 120 days after planting

A ccession number	Shade levels (\%)			M ean of accessions
	0	25	50	
$\mathrm{S}_{1} \mathrm{~A}_{1}$	5.56	4.48	2.60	4.22
$\mathrm{S}_{1} \mathrm{~A}_{2}$	5.50	5.33	2.61	4.48
$\mathrm{S}_{1} \mathrm{~A}_{3}$	5.27	4.29	2.65	4.07
$\mathrm{S}_{1} \mathrm{~A}_{4}$	5.39	4.85	2.42	4.22
$\mathrm{S}_{1} \mathrm{~A}_{5}$	5.17	4.11	2.58	3.95
M ean (\mathbf{S}_{1})	5.38	4.61	2.57	
$\mathrm{S}_{2} \mathrm{~A}_{1}$	9.73	6.78	2.52	6.34
$\mathrm{S}_{2} \mathrm{~A}_{2}$	10.76	7.23	2.41	6.80
$\mathrm{S}_{2} \mathrm{~A}_{3}$	9.20	7.26	2.47	6.31
$\mathrm{S}_{2} \mathrm{~A}_{4}$	10.96	6.89	2.46	6.77
$\mathrm{S}_{2} \mathrm{~A}_{5}$	10.47	7.33	2.50	6.77
M ean (\mathbf{S}_{2})	10.22	7.10	2.47	
$\mathrm{S}_{3} \mathrm{~A}_{1}$	2.97	2.32	1.79	2.36
$\mathrm{S}_{3} \mathrm{~A}_{2}$	3.26	2.12	1.85	2.41
$\mathrm{S}_{3} \mathrm{~A}_{3}$	3.10	1.74	1.86	2.53
$\mathrm{S}_{3} \mathrm{~A}_{4}$	2.81	2.00	1.92	2.25
$\mathrm{S}_{3} \mathrm{~A}_{5}$	2.79	1.10	1.80	2.19
M ean (S_{3})	3.17	2.04	1.84	
M ean (Shade levels)	6.26	4.58	2.30	
S.E.	0.45	0.28	0.08	
CD (Species)	0.579	0.356	0.110	
Pooled analysis				
CD A ccessions				437*
Shades				90*
Shade \times accession				221*

*significant at 5\% level
Table 4. Mean chlorophyll ' a ' $\left(\mathrm{mg} \mathrm{g}^{-1}\right.$) content of mint accessions under different shadelevels at 120 days after planting

Accession Number	Shade levels			M ean of accessions
	0\%	25\%	50\%	
$\mathrm{S}_{1} \mathrm{~A}_{1}$	0.579	0.533	0.466	0.526
$\mathrm{S}_{1} \mathrm{~A}_{2}$	0.579	0.655	0.486	0.573
$\mathrm{S}_{1} \mathrm{~A}_{3}$	0.481	0.632	0.424	0.512
$\mathrm{Si}_{1} \mathrm{~A}_{4}$	0.477	0.508	0.408	0.464
$\mathrm{Si}_{1}{ }_{5}$	0.500	0.512	0.396	0.469
M ean (\mathbf{S}_{1})	0.523	0.568	0.436	
$\mathrm{S}_{2} \mathrm{~A}_{1}$	0.355	0.588	0.717	0.553
$\mathrm{S}_{2} \mathrm{~A}_{2}$	0.366	0.587	0.719	0.557
$\mathrm{S}_{2} \mathrm{~A}_{3}$	0.375	0.593	0.588	0.518
$\mathrm{S}_{2} \mathrm{~A}_{4}$	0.381	0.574	0.609	0.521
$\mathrm{S}_{2} \mathrm{~A}_{5}$	0.379	0.499	0.521	0.467
Mean (\mathbf{S}_{2})	0.371	0.568	0.631	
$\mathrm{S}_{3} \mathrm{~A}_{1}$	0.374	0.707	0.698	0.593
$\mathrm{S}_{3} \mathrm{~A}_{2}$	0.470	0.592	0.718	0.593
$\mathrm{S}_{3} \mathrm{~A}_{3}$	0.704	0.466	0.714	0.628
$\mathrm{S}_{3} \mathrm{~A}_{4}$	0.724	0.516	0.610	0.617
$\mathrm{S}_{3} \mathrm{~A}_{5}$	0.732	0.597	0.614	0.648
M ean (S_{3})	0.601	0.575	0.671	
M ean (Shade levels)	0.498	0.570	0.579	
S.E.	0.09	0.07	0.09	
CD (Species)	0.117	NS	0.113	
Pooled analysis				
CD Accessions				
Shades				
Shade x accession				

*significant at 5\% level
www.bvgt-
journal.com

Table 5. Mean chlorophyll ' $b^{\prime}\left(\mathrm{mg} \mathrm{g}^{-1}\right)$ content of mint accessions under different shade levels at 120 days after planting

A ccession number	Shade levels (\%)			Mean of accessions
	0\%	25\%	50\%	
$\mathrm{S}_{1} \mathrm{~A}_{1}$	0.509	0.573	0.641	0.574
$S_{1} A_{2}$	0.494	0.580	0.671	0.582
$\mathrm{S}_{1} \mathrm{~A}_{3}$	0.552	0.628	0.530	0.570
$\mathrm{S}_{1} \mathrm{~A}_{4}$	0.534	0.619	0.529	0.561
$\mathrm{S}_{1} \mathrm{~A}_{5}$	0.547	0.662	0.509	0.573
M ean (\mathbf{S}_{1})	0.528	0.612	0.576	
$\mathrm{S}_{2} \mathrm{~A}_{1}$	0.365	0.763	0.779	0.635
$\mathrm{S}_{2} \mathrm{~A}_{2}$	0.360	0.671	0.806	0.613
$\mathrm{S}_{2} \mathrm{~A}_{3}$	0.374	0.728	0.831	0.644
$\mathrm{S}_{2} \mathrm{~A}_{4}$	0.377	0.699	0.805	0.627
$\mathrm{S}_{2} \mathrm{~A}_{5}$	0.360	0.723	0.665	0.582
M ean (S_{2})	0.367	0.717	0.777	
$\mathrm{S}_{3} \mathrm{~A}_{1}$	0.381	0.883	0.744	0.669
$\mathrm{S}_{3} \mathrm{~A}_{2}$	0635	0.888	0.778	0.767
$\mathrm{S}_{3} \mathrm{~A}_{3}$	0.792	0.650	0.874	0.772
$\mathrm{S}_{3} \mathrm{~A}_{4}$	0.829	0.636	0.774	0.746
$\mathrm{S}_{3} \mathrm{~A}_{5}$	0.784	0.762	0.782	0.776
M ean (S_{3})	0.684	0.764	0.790	
M ean (Shade levels)	0.526	0.697	0.714	
S.E.	0.14	0.13	0.14	
CD (Species)	0.185	NS	0.178	
Pooled analysis				
CD A ccessions				
Shades				
Shade x accession				

NS - N on Significant; *significant at 5\% level
in the range of $400-700 \mathrm{~nm}$ wave bands preferentially and the PAR incident on the plants under shaded condition might be substantial ly lower than that under full sunlight (Singh $\&$ al., 2004). A tendency of the plants to decrease the stomatal conductance with increase in shade levels was observed (Table 3). The change in stomatal frequency and hencethehigher stomatal pore area per unit area of leaf is positively correlated with higher stomatal conductance as observed by Forseth \& al. (2004). This is further supported by thefindings of Attridge (2004) who reported that the chlorophyll 'b' contentwas higher under shadeconditions. Thepresent study recorded thesamepattern (Table5).

Comparison of accessions between shade levels

The accession, S2A 4 recorded higher stomatal conductance ($10.96 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$) under open condition (Table3). Thisis in confirmity with thefindings of Jifon and Syvestsen (2004) who reported athreefold increase in stomatal conductancein Atriplex leaves grown at high light intensity than the leaves grownat low light intensity.
It is concluded that the mint sp. could be successfully grown under shaded conditions of up to 25% of the normal light situation with insignificant decline in the chosen physiological parameters.

ACKNOWLEDGEMENTS

Senior author expresses his sincerethanks to the Dean, Associate Professor and Head, Department of

Plantation Crops and Spices, College of Agriculture, Kerala Agriculture University, Vellayani, Thiruvanathapuram, Kerala for his valuable suggestions and constant support during the research work.

REFERENCES

Attridge, M. 2004. Photosynthetic characteristics and pigment content and composition in Littorella uniflora L. in a depth gradient. PI. Cell Env., 32 : 307-320.
Forseth, P., Jarvis, P.G. and Jarvis, M.S. 2004. Resistances to carbondioxide and water vapour transfer in leaves of different plant species. Agric. For. Me., 18: 553-571.
Jifon, J.L. and Syrestsen, J.P. 2004. Effect of light intensity during growth of Atriplex patula on the capacity of photosynthetic reactions, chloroplast components and structure. Carnegie Inst. Washington Yerb 21: 115-135.
Singh, S., Matt, D.R., Hutchinson, B.A. and McMillen, R.T. 2004. Solar radiation within an oak-hickory forest: an evaluation of the extinction coefficients for several radiation components during fully leafed and leafless periods. A gric. For. Me., 32: 307-322.
Starnes, W.J. and Hadley, H.H. 1965. Chlorophyll content of various strains of soybeans. Crop Sdi., 25: 259-260.
Zelitch, I. 1971. Photosynthesis, Photorespiration and Plant Productivity. Academic Press, New York.

[^0]: *Corresponding author
 email: mpkscientist@yahoo.co.in

