
P - ISSN 0973 - 9157 www.bvgtjournal.com
E - ISSN 2393 - 9249
April to June 2015 Scientific Transactions in Environment and Technovation

A Study on Frequent Subgraph Mining Algorithms and Techniques for
Software Bug Localization
A. Adhiselvam1, E. Kirubakaran2 and R. Sukumar3

1PG Department of Computer Applications, S.T.E.T Women’s College, Mannargudi, Tamilnadu
2STTP (Systems), Bharat Heavy Electrical Limited, Trichirappalli, Tamilnadu
3Department of Computer Science and Engineering, Sethu Institute of Technology, Kariapatti, Tamilnadu

Abstract
With increasing demand on the study of large amounts of structured data, graph mining has become an active and
important subfield in data mining domain. Frequent subgraph mining, graph classification, graph clustering and graph
matching are the common types of graph mining algorithms for graph data. Mining graph data has recently emerged as
a promising area in the current research. Software Engineering (SE) graph data is particularly important for the graph
data. SE graph data includes static or dynamic call-graphs. Call-graphs are formed from control flow of programs.
Software bug localization is one important application of frequent subgraph mining algorithm in which the structure of
the call-graph is studied in order to determine and isolate bugs in the program. This paper deals with survey of generic
frequent subgraph mining algorithms and a survey of specific graph mining techniques for software bug localization (or
bug detection) application and graph mining methodology. A compareson two generic algorithms such as gSpan and
CloseGraph with respect to six factors namely graph representation, subgraph generation, algorithmic approach, frequency
evaluation, input, and output has also been made. These two algorithms are most relevant for software bug localization.

Keywords: Graph Mining, Software bug localization, Frequent Subgraph mining, call-graphs

 INTRODUCTION

Many scientific and commercial applications need
patterns that are more complicated than frequent itemsets
and sequential patterns and require extra effort to
discover (Han and Kamber, 2000) . Traditional data
mining algorithms such as frequent pattern mining,
classification, clustering, and indexing have now been
extended to graph scenario. As in the case of other data
types such as multi-dimensional or text data, we can
design mining problems for structure data. The
structured data include chemical data, biological data,
web data and software engineering data. These
structured data can be easily represented as graph. In
addition, many new kinds of data such as semi-
structured data and XML (Aggarwal et al., 2007) can
typically be represented as graphs. Graphs become
increasingly complicated structures in modeling such
as circuits, chemical compounds, protein structures,
biological networks, social networks (Han and Kamber,
2000). The control flow of programs can also be modeled
in the form of graph called call-graph (Cham et al., 2010).
Graph mining extracts useful information from
structured data that can be represented as graph. To
analysis graph data, graph mining plays important role
in data mining. Graph mining has been a popular
research area in recent years because of numerous
applications in bioinformatics, cheminformatics,
software engineering, network analysis, image
processing (Cham et al., 2010)

A number of algorithms have been developed for graph
mining problems such as frequent subgraph mining,
graph clustering and graph classification. The frequent
subgraph mining problem is particularly important for
the graph domain, because the end-results of the
algorithms provide an overview of the important
structures in the underlying data set, which may be used
for other applications such as indexing (Yan et al., 2003).
Frequent subgraphs are useful at characterizing graph
sets, discriminating different groups of graphs,
classifying and clustering graphs, and building graph
indices (Cham et al., 2010). The problem can be defined
in two different ways depending upon the application
domain. In the first case, we have a group of graphs,
and we wish to determine all patterns which support a
fraction of the corresponding graphs (Inokuchi et al.,
2000; Kuramachi and Karpis, 2001; Venetik et al., 2002).
In the second case, we have a single large graph, and we
wish to determine all patterns which are supported at
least a certain number of times in this large graph
(Kuramochi and Karypis, 2001; Bringmann and Nijssen,
2008; Fielder and Borgelt, 2007).

The frequent subgraph mining problem can be defined
as the process of finding those subgraphs from a given
graph or a set of graphs which have frequent or multiple
instances within the given graph or the set of graphs.
There are two basic approaches to the frequent subgraph
mining problem: the Apriori-based approach and the
Pattern-growth approach (Han and Kamber, 2000).
Hence, there exists many graph mining algorithms based
on these approaches. In the first approach, the search
for frequent graphs starts with graphs of small size, and

J. Sci. Trans. Environ. Technov. 2015, 8(4) : 207-211

207

Scientific Transactions
in Environment and
Technovation

Corresponding Author :
adhiselvam@yahoo.com

P - ISSN 0973 - 9157 www.bvgtjournal.com
E - ISSN 2393 - 9249
April to June 2015 Scientific Transactions in Environment and Technovation

proceeds in a bottom-up manner by generating
candidates having an extra vertex, edge, or path. Apriori-
based algorithms have considerable overhead when
joining two size-k frequent subgraphs to generate size-
(k+1) graph candidates. In order to avoid such overhead,
non-apriori-based algorithms have been developed, most
of which adopt the pattern-growth methodology (Han
and Kamber, 2000). Typical Apriori-based algorithms
include AGM, FSG, and edge-disjoint path-join
algorithm. Pattern-growth graph mining algorithms
include gSpan, MoFa, FFSM, SPIN, and Gaston (Cham
et al., 2010).

To improve both software productivity and quality,
software engineers are increasingly applying data
mining algorithms in various software engineering tasks
(Foxie et al., 2009). Frequent subgraph mining algorithm
is one such example. Some of the interesting software
engineering tasks include how to invoke Application
Programming Interface (API) methods provided by a
complex library, bug detection, debugging and testing.
SE data mainly concerns with various software
development phases. SE data can be broadly categorized
into sequences such as execution traces and static traces,
graphs such as dynamic call-graphs and static call-
graphs, and text such as bug reports, code comments,
and documentation (Foxie et al., 2009). Mining SE graph
data poses several challenges. Example of SE graph
data includes ca ll-graphs as well as program-
dependence graphs (Chang et al., 2007). Call-graphs
are formed from control flow of programs in which all
methods, procedures and functions are defined as nodes,
and relationship between these methods are defined as
edges. Call-graphs are of two types namely (i) dynamic
call-graph collected at run-time, and (ii) static call-graph
extracted from source code. Software bug localization
is one of the important applications of frequent
subgraph mining algorithms from the perspective of
software quality and productivity.

II. SURVEY OF ALGORITHMS AND TECHNIQUES

A wide range of algorithms on frequent subgraph mining
were developed by many researchers. Frequent subgraph
mining algorithms are usually generic in nature. These
algorithms can be applied across various domains by
tuning the core algorithm to the application requirement.
The problem of frequent subgraph discovery has its roots
in the early nineties with the formulation of the algorithm
for market-based analysis (Agarwal and Srikant, 1994).
Some of them are reviewed in this section.

Holder et al. (1994) developed the SUBDUE system,
which uses minimum description length principle to
discover substructure that compress the database and
represent structural concepts in the data. This system
uses pattern-growth algorithmic approach in frequent
subgraph mining. Yan and Han (2002) designed new

pattern-growth based frequent subgraph mining in
graph datasets and proposed a novel algorithm called
gSpan. Haun et al. (2003) proposed a novel pattern-
growth subgraph mining algorithm called FFSM, which
employs a vertical search scheme within an algebraic
graph framework. FFSM uses adjacency matrix
representation to store graph data. Nijssen and Kok
(2004) proposed a pattern-growth based algorithm called
GASTON, which uses quickstart principle. It uses hash
table representation to store graph data. In the search
for sub-structures, first paths are considered, then paths
are transformed into trees and finally trees are
transformed to graphs. Saigo et al. (2008) proposed an
iterative mining method based on partial least squares
regression. To apply PLS to graph data, a sparse version
of PLS is developed first and then it is combined with a
weighted pattern mining. Yan et al. (2008) proposed an
efficient algorithm which mines the most significant
subgraph pattern with respect to the objective function.
Ranu and Singh (2009) proposed GraphSig, a scalable
method to mine significant subgraph based on a feature
vector representation of graphs.

Besides the frequent subgraph mining algorithms,
constraint-based subgraph mining algorithms have also
been proposed. Feida Zhu et al. (2007) proposed a new
general framework called gPrune to incorporate all the
constraints in such a way that they recursively reinforce
each other through entire mining process. A frequent
graph pattern with n edges can have 2n frequent
subgraphs, which is an exponential number (Cham
et al., 2010). To overcome this problem, closed subgraph
mining and maximal subgraph mining algorithms were
proposed. Yan and Han (2003) proposed a new
algorithm called Close Graph which mines closed
frequent sub patterns instead of mining the entire
subgraph. Haun et al. (2004) proposed a new algorithm
that mines only maximal frequent subgraphs. Maximal
frequent subgraph is a subgraph that is not part of any
other frequent subgraphs.

The current researches also focus on directed frequent
subgraph mining. Termier et al. (2007) developed an
algorithm called DIGDAG which aimed at discovering
directed acyclic subgraphs. Li et al. (2009) proposed an
algorithm to mine all the frequent labeled directed
subgraphs.

There has been a rise in the development of application-
centric algorithms which are most suited for certain
applications and efficient in solving the problem
associated with that domain (Varunkrishna et al., 2011).
Software bug localization is a natural application in
frequent subgraph mining algorithms. The generic
algorithms such as gSpan and Close Graph are well
suited for software bug localization. Several algorithms
have been developed in the context of software bug
localization. There are two sorts of approaches namely

208 A. Adhiselvam, E. Kirubakaran and R. Sukumar J. Sci. Trans. Environ. Technov. 8(4), 2015

P - ISSN 0973 - 9157 www.bvgtjournal.com
E - ISSN 2393 - 9249
April to June 2015 Scientific Transactions in Environment and Technovation

structural and frequency approaches. Structural
approaches for bug localization can locate structure
affecting bugs. Frequency approaches are used to locate
frequency affecting bugs.

Liu et al. (2005) developed a novel method to classify the
structured traces of program executions using software
behavior graphs. By analyzing the correct and incorrect
executions, they have made good progress at the
isolation of program regions that may lead to the faulty
executions. Dallmeier et al. (2005) proposed common
method to localize defects. Di Fatta et al. (2006) presented
a method to enhance fault localization for software
systems based on a frequent pattern mining algorithm.
This method is based on a large set of test cases for a
given set of programs in which faults can be detected.
Eichinger et al. (2008) investigated the utilization of call
graphs of program executions and graph mining
algorithms to approach this problem.

Eichinger et al. (2008) proposed a novel reduction
technique for call graphs which introduces edge
weights. They presented an analysis technique for such
weighted call graphs based on graph mining. They
mined weighted graphs with a combination of structural
and numerical techniques. Ray-Yaung Chang and Andy
Podgurski (200) presented a novel approach for
revealing neglected conditions that integrates static
program analysis and advanced data mining techniques
to discover implicit conditional rules in a code base and
to discover rule violations that indicate neglected
conditions. David Lo et al. (2009) addressed software
reliability issues by proposing a novel method to classify
software behaviors based on past history or runs. With
the technique, it is possible to generalize past known
errors and mistakes to capture failures and anomalies.
This technique first mines a set of discriminative features
capturing repetitive series of events from program
execution traces. It then performs feature selection to
select the best features for classification. These features
are then used to train a classifier to detect failures. Liu
et al. (Year) proposed a new statistical model-based
approach called SOBER which localizes software bugs
without any prior knowledge of program semantics.
Nguyen et al. (2009) developed Grou Miner algorithm
which is applicable to object-oriented programming. It
is used to discovering usage patterns of one or more
objects or classes where objects or classes are represented
in the form of labeled directed acyclic graphs. Parsa
et al. (2010) presented a paper to extract dynamic
behavioral graphs from different executions of a program
and analyze them to find bug relevant sub-graphs. They
have proposed a new formula to rank the edges based
on their suspiciousness to the failure.

MINING METHODOLOGY

The methodology to mine SE graph data is very
important. Tao Xie et al. (2008) presented mining
methodology to mine SE data. This consists of five steps:

Step 1: Collect/investigate SE data to mine
Step 2: Determine the Software Engineering task to assist
Step 3: Preprocessing data
Step 4: Adopting/developing a mining algorithm
Step 5: Postprocessing or applying mining results

Software engineers can start with either a problem-
driven approach or a data-driven approach, but in
practice they commonly adopt a mixture of the first two
steps. Third step involves extracting relevant data from
the raw SE data. For example, call-graph is obtained
from source code. The data are further processed by
cleaning. The next step is to adopt or develop a graph
mining algorithm. The final step transforms the mining
algorithm results into an appropriate format required to
assist the SE task.

In the applications perspective, several approaches have
been proposed to localize bugs by means of call-graph
mining. The approaches consist of three steps [1]:

Step 1: Deduction of call-graphs: They can be obtained
by tracing program executions. Further, a classification
of program executions as correct or failing is needed to
find discriminative patterns.

Step 2: Reduction of call-graphs: It is necessary to
overcome the huge sizes of call-graphs

Step 3: This step includes frequent subgraph mining and
the analysis of resulting frequent subgraphs.

DISCUSSION

In this section, we first compare two generic algorithms
such as gSpan and CloseGraph. Both algorithms use
adjacency matrix representation, rightmost extension
subgraph generation and pattern growth algorithmic
approach. These three characteristics are important for
execution of these algorithms. Frequency evaluation is
another important characteristic in the frequent
subgraph mining algorithms. It is the process of
counting the number of occurrences of a subgraph in a
large graph or set of graphs. gSpan and CloseGraph
use Depth First Search lexicographic ordering for
frequency evaluation. Both algorithms take a set of small
graphs as input. The only difference between gSpan
and CloseGraph is that first algorithm mines complete
set of frequent subgraphs as output and second
algorithm finds partial set of frequent subgraphs as
output. The above details are summarized in Table I.

Secondly, we consider some specific algorithms for
software bug localization problem. In (Difalla et al.,
2006), data mining techniques are used in proposed
method to analysis data generated during program test.
A frequent pattern mining algorithm is also used to
identify frequent subtrees in successful and failing test
executions.

J. Sci. Trans. Environ. Technov. 8(4), 2015 A Study on Frequent Subgraph Mining Algorithms . . . 209

P - ISSN 0973 - 9157 www.bvgtjournal.com
E - ISSN 2393 - 9249
April to June 2015 Scientific Transactions in Environment and Technovation

Table I. Comparison of Generic Algorithms gSpan and
CloseGraph with respect to six factors

Factors Frequent subgraph mining algorithms

gSpan CloseGraph

Graph Adjacency Adjacency list
Representation list

Subgraph Rightmost Rightmost
generation extension extension

subgraph subgraph

Algorithm-based Pattern-growth Pattern-growth

Frequency DFS lexico DFS lexico
 evaluation graphic order graphic order

Input A set of small A set of small
graphs graphs

Output Complete set Partial set of
of frequent frequent subgraphs
subgraphs

In (Frank Eichinger et al., 2008), a dynamic control flow
approach is used for localization of noncrashing bugs.
This novel technique used edge weights to represent call
frequencies. In (Parsa et al., 2010), a new ranking method
is developed to analyze program dynamic graph. Both
weighted and un-weighted graphs were analyzed with
ranking method.

CONCLUSION

Frequent subgraph mining is one of the most challenging
problems in domain of graph mining. With the new
development in software methodology, Computing
technology, hardware technology, processing power
and storage space of computer, more efficient algorithms
need to be developed. The existing frequent subgraph
mining algorithms and techniques can be extended with
effective techniques such as map reduce technique,
statistical techniques and machine learning techniques.
This paper provides a common platform to develop a
new and efficient frequent subgraph mining algorithm
and technique for software bug localization.

REFERENCE
Aggarwal,C. Ta, J. Feng,N. Wang,J. Zaki,M.J. and XProj.

2007. A Framework for Projected Structural
Clustering of XML Documents, KDD Conference.

Agarwal R. and Srikant,R. 1994. Fast algorithm for mining
association rules in large databases, In Proceedings
of the 20th International conference on very large data
bases, San Francisco, USA, pp. 887-499.

Bringmann,B. and Nijssen,S. 2008. What is Frequent in a
Single Graph?, PAKDD Conference.

Charu C. Aggarwal and Haixun Wang. 2010. Managing and
Mining Graph Data, Springer Publishing company,
Incorporated.

Chang,R. Y. Podgurski, A. and Yang, J. 2007. Finding What’s
Not There: A New Appr oach to Revea li ng
Neglected Conditions in Software, International
Symposium of Software Testing and Analysis, ACM
Press, pp. 163-173.

Dallmeier, V. Lingig, C. and Zeller, A. 2005. Lightweight
defect localization for java, Proc. of the 19th European
conf. on Object-Oriented programming.

David Lo, Hong Cheng, Jiawei Han, SiauCheng Khoo and
Chengnian Sun. 2009. Classification of Software
Behaviors for Failure Detection: A Discriminative
Pattern Mining Approach, KDD’09.

Di Fatta, G. Leue, S. and Stegantova, E. 2006. Discriminative
Pattern Mining in Software Fault Detection, Proc.
of the Int. Workshop on Software Quality Assurance
(SOQUA).

Frank Eichinger, Klemens Bohm, Matthias Huber. 2008.
Improved Software Fault Detection with Graph
Mining, Appearing 6th International Workshop on
Mining and Learning with Graphs, Helsinki, Finland.

Frank Eichinger, Klemens Bohm, Matthias Huber. 2008.
Mining Edge-Weighted Call-Graphs to localize
software Bugs, Proc. of the European conf. on machine
learning and principles and practice of knowledge
discovery in databases.

Feida Zhu, Xifeng, Jiawei Han, Philip Yu,S. 2007. gPrune: A
Constraints based framework for graph pattern
mining, PAKDD’07 Proc. 11th Pacific-Asia conference
on Advances in knowledge discovery and data mining.

Fiedler,M. Borgelt,C. 2007. Support Computation for
Mining Frequent Subgraphs in a single graph,
Workshop on mining and Learning with Graphs.

HanJ. and Kamber, M. 2000. Data Mining:Concepts and
Techniques, Morgan Kaufmann.

Haun, J. Wang, W. Prins, J. 2003. Efficient Mining of
Fr equent Sub gra phs i n the Pr esence of
Isomorphism, Proc. 2003 Int. Conference of Data
Mining, pp. 549-552.

Haun, J. Wang, W. Prins, J. and Yang, J. 2004. SPIN: Mining
maximal frequent subgraphs from graph databases,
Proc.2004 ACM SIGKDD Int. Conf. Knowledge
Discovery in databases, pp.581-586.

Holder, L. B. Cook,D.J. Djoko,S. 1994. Substructure
discovery in the SUBDUE system, Proc. AAAI
workshop knowledge discovery in database.

Inokuchi,A. Washio,T. and Motoda,H. 2000. An Apriori-
ba sed Alg or ithm for Mini ng F requent
Substructures from Graph Data, PKDD Conference,
pages 13-23.

Kuramochi, M. and Karypis,G. 2001. Frequent Subgraph
discovery, ICDM conference, pp. 313-320, Nov.

Li,Y. Lin, Q. Zhong, G. Duan, D. Jin, Y. Bi, W. 2009. A
directed labeled graph frequent pattern mining
algorithm based on minimum code, 3rd International

210 A. Adhiselvam, E. Kirubakaran and R. Sukumar J. Sci. Trans. Environ. Technov. 8(4), 2015

P - ISSN 0973 - 9157 www.bvgtjournal.com
E - ISSN 2393 - 9249
April to June 2015 Scientific Transactions in Environment and Technovation

conference on Multimedia and Ubiquitous Engineering,
IEEE, pp. 353-359.

Liu, C. Yan, X. Yu, H. Han, J. and Yu, P.S. 2005. Mining
Behavior Graphs for Backtrace of Noncrashing
Bugs, Proc. of the Int. Conf. on Data Mining (SDM).

Liu, C. Yan, X. Fei, L. Han, J. Midkiff, S.P. 2005. SOBER:
Statistical model-based Bug Localization, SIGSOFT
Software Engineering Notes.

Nguyen,T. Nguyen,H. Pham,H. Al-kofahi,J. 2009. Graph-
based mining of multiple usage patterns, ACM, pp. 383-
392.

Nijssen S. and Kok, J. 2004. A quickstart in frequent
substructure mining can make a difference, Proc.
2004 ACM SIGKDD international conference of
knowledge discovery in databases, pp. 647-652.

Parsa, S. Mousavian Z. and Vahidi-Asl, M. 2010. Analyzing
Program Dynamic Graphs for Software Fault
Loca liz ati on, 5 th IEEE In t. S ymp osiu m on
Telecommunications.

Ray-Yaung Chang, Andy Podgurski, 2008. Discovering
Neglected Conditions In Software By Mining
Dependence Graphs, IEEE Transactions on Software
Engineering, Vol. 34, No. 5.

Ranu, S. and Singh, A. K. 2009. GraphSig: A Scalable
approach to mining significant subgraphs in large
graph databases, Proc. 2009 Int. Conf. Data Mining,
pp. 844-855.

Saigo, H. Kramer, N. and Tsuda, K. 2008. Partial least
squares regression for graph mining, Proc.2008
ACM SIGKDD Int. Conf. Knowledge Discovery in
databases, pp.578-586.

Termier, A. Tamada, Y. Numata, K. Imoto, S. Washio, T.
and Higuchi, T. 2007. DIGDAG: a first algorithm to
mine closed frequent embedded sub-DAGs, Proc.
mining and learning with graph workshop, Citeseer,
pp. 41-45.

Varun Krishna, N.N.R. Ranga Suri, and Athithan,G. 2011. A
Comparative survey of algorithms for frequent subgraph
discovery, Current Science, 100, No. 2, August.

Venetik,N. Gudes,E. and Shimony,S. E. 2002. Computing
Frequent Graph Patterns from Semi-structured
Data, IEEE ICDM Conference.

Xifeng Yan and Jiawei Han, 2003. CloseGraph: Mining
Closed Frequent Graph Patterns, Proc.2003 ACM
SIGKDD Int. Conf. Knowledge Discovery in databases,
pp.286-295.

Yan,X. Yu,P. S. and Han,J. 2003. Graph Indexing: A Frequent
Structure-based Approach, SIGMOD Conference.

Yan, X. and Han, J. 2002. gSpan: Graph-based substructure
pattern mining, International conference of Data
mining.

Yan, X. Cheng, H. Han, J. and Yu, P.S. 2008. Mining
sig nifi cant gra ph patter ns b y scalab le l eap
structure, Proc.2008 ACM SIGKDD Int. Conf.
Knowledge Discovery in databases, pp.433-444.

J. Sci. Trans. Environ. Technov. 8(4), 2015 A Study on Frequent Subgraph Mining Algorithms . . . 211

